c-Type cytochromes in Pelobacter carbinolicus.
نویسندگان
چکیده
Previous studies failed to detect c-type cytochromes in Pelobacter species despite the fact that other close relatives in the Geobacteraceae, such as Geobacter and Desulfuromonas species, have abundant c-type cytochromes. Analysis of the recently completed genome sequence of Pelobacter carbinolicus revealed 14 open reading frames that could encode c-type cytochromes. Transcripts for all but one of these open reading frames were detected in acetoin-fermenting and/or Fe(III)-reducing cells. Three putative c-type cytochrome genes were expressed specifically during Fe(III) reduction, suggesting that the encoded proteins may participate in electron transfer to Fe(III). One of these proteins was a periplasmic triheme cytochrome with a high level of similarity to PpcA, which has a role in Fe(III) reduction in Geobacter sulfurreducens. Genes for heme biosynthesis and system II cytochrome c biogenesis were identified in the genome and shown to be expressed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of protein extracted from acetoin-fermenting P. carbinolicus cells contained three heme-staining bands which were confirmed by mass spectrometry to be among the 14 predicted c-type cytochromes. The number of cytochrome genes, the predicted amount of heme c per protein, and the ratio of heme-stained protein to total protein were much smaller in P. carbinolicus than in G. sulfurreducens. Furthermore, many of the c-type cytochromes that genetic studies have indicated are required for optimal Fe(III) reduction in G. sulfurreducens were not present in the P. carbinolicus genome. These results suggest that further evaluation of the functions of c-type cytochromes in the Geobacteraceae is warranted.
منابع مشابه
Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production.
Although Pelobacter species are closely related to Geobacter species, recent studies suggested that Pelobacter carbinolicus may reduce Fe(III) via a different mechanism because it lacks the outer-surface c-type cytochromes that are required for Fe(III) reduction by Geobacter sulfurreducens. Investigation into the mechanisms for Fe(III) reduction demonstrated that P. carbinolicus had growth yiel...
متن کاملLack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors...
متن کاملInterspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.
Direct interspecies electron transfer (DIET) is an alternative to interspecies H(2)/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P. carbi...
متن کاملTranscriptomic and genetic analysis of direct interspecies electron transfer.
The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbi...
متن کاملPurification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system.
Dihydrolipoamide dehydrogenase (DHLDH), dihydrolipoamide acetyltransferase (DHLTA), and acetoin: 2,6-dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) were purified from acetoin-grown cells of Pelobacter carbinolicus. DHLDH had a native Mr of 110,000, consisted of two identical subunits of Mr 54,000, and reacted only with NAD(H) as a coenzyme. The N-terminal amino acid sequence included the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 72 11 شماره
صفحات -
تاریخ انتشار 2006